

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
High voltage measureme	ents		
Course			
Field of study		Year/Semester	
Electrical Engineering		2/4	
Area of study (specialization)		Profile of study	
High voltage engineering	g	general academic	
Level of study		Course offered in	
Second-cycle studies		Polish	
Form of study		Requirements	
part-time		compulsory	
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
20	10	0	
Tutorials	Projects/seminars		
0	0		
Number of credit points	5		
4			
Lecturers			
Responsible for the course/lecturer:		onsible for the course/lecturer:	
dr hab. inż. Krzysztof Sio	dła, prof. PUT		
e-mail: krzysztof.siodla@	9put.poznan.pl		
tel. 61-6652279			
Faculty of Environmenta Energy	I Engineering and		
Institute of Electric Powe	er Engineering		
3A Piotrowo Str.; 60-96	5 Poznań		

Prerequisites

Has knowledge in the field of physics, electrical engineering, electrical power engineering, high voltage techniques, the basics of high voltage measurements. Has the ability to effectively self-study in a field related to the chosen field of study. Is aware of the need to expand their knowledge, skills, competences, readiness to cooperate within a team

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

Understanding how to measure high alternating, direct and surge voltages and surge currents. Getting to know modern research techniques of devices working in the electric power system

Course-related learning outcomes

Knowledge

1. Has expanded knowledge in the field of measuring electrical quantities and selected non-electrical quantities; has in-depth knowledge of how to work out the results of the experiment

2. Has in-depth theoretical and practical knowledge in the field of interference sources as well as effects and ways of limiting their impact on the power grid

3. Knows the general principles of creating and developing forms of individual entrepreneurship as well as the principles of industrial property and copyright protection

Skills

1. Is able to plan and carry out simulation and measurements of basic electrical and non-electrical quantities, as well as extraction of quantities characterizing materials, components and electrical systems

2. Is able to plan the testing process of complex electrical devices and systems

3. Is able to proper use of electrical equipment and perform electrical measurements at high voltages

Social competences

1. Recognizes the importance of knowledge in solving cognitive and practical problems and understands that in technology knowledge and skills are quickly becoming obsolete and therefore require continuous replenishment

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

Assessment of knowledge and skills demonstrated during the written exam of a problem nature

Programme content

Lecture

Classification of technical terms connected with high-voltage measurement technique characterizing alternating voltage, direct voltage, lightning impulse, switching impulse, current surges. High voltage alternating, direct and surge voltage test sets. High voltage measurement methods: sphere-to-sphere spark gap, electrostatic voltmeter, voltage transformer, resistance and capacitive divider, rectifier system, peak voltage voltmeter. Current transformer, current shunt, Rogowski transformer. Optoelectronic methods for measuring high voltages and high currents. Systems for investigation of partial discharges by the electric, chemical and acoustic method. Methodology for performing voltage

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

tests. Generation of combined and associated test voltages. Study of the distribution of the electric field strength

Laboratory

Generation of alternating, direct and impulse test voltages. High voltage measurement methods. Investigation of partial discharges in insulating systems

Teaching methods

Lecture

Lecture with multimedia presentation supplemented with examples given on the blackboard. The lecture is conducted in an interactive way with the formulation of questions addressed to the students

Laboratory

Checking the preparation for laboratories before each laboratory, preparation of laboratory reports, final evaluation conversation

Bibliography

Basic

1. Flisowski Z., Technika wysokich napięć, WNT, Warszawa, 2014

2. Wodziński J., Wysokonapięciowa technika prób i pomiarów, PWN Warszawa, 1997

3. Mościcka-Grzesiak H., Inżynieria wysokich napięć w elektroenergetyce, tom I/II, Wydawnictwo Politechniki Poznańskiej 1996/99

Additional

1. Florkowska B., Diagnostyka wysokonapięciowych układów izolacyjnych urządzeń elektroenergetycznych, Wydawnictwa AGH, Kraków, 2016

2. Kuffel E., Zaengl W., Kuffel J., High Voltage Engineering. Fundamentals, Butterworth-Heineman, 2001

3. Florkowska B. i inni, Mechanizmy, pomiary i analiza wyładowań niezupełnych w diagnostyce układów izolacyjnych wysokiego napięcia, Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH, Kraków, 2010

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	95	4,0
Classes requiring direct contact with the teacher	45	2,0
Student's own work (literature studies, preparation for	50	2,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate